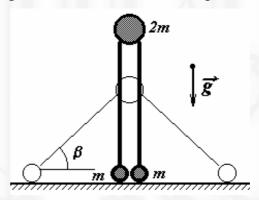


Белорусская республиканская олимпиада по физике (Лида, 1995 г.)

9 класс


9-1. К горизонтально расположенному шероховатому цилиндру радиусом

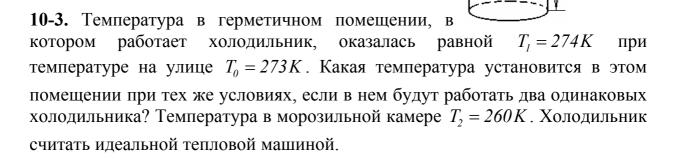
 R_1 , вращающемуся с постоянной частотой n_1 , прижимают сверху шероховатый цилиндр радиусом R_2 . Ось второго цилиндра также горизонтальна, угол AOB равен α . Определите установившуюся частоту вращения верхнего цилиндра. Оси обоих цилиндров жестко закреплены. Поверхности цилиндров не деформируются.

9-2. Три шарика массами m,2m,m шарнирно скреплены легкими жесткими стержнями длиной l и установлены вертикально на гладкой горизонтальной

плоскости. Систему легким толчком выводят из положения равновесия. Определите скорости шаров в момент когда стержни составляют угол β с горизонтом, если система все время остается в вертикальной плоскости. Сопротивлением воздуха пренебречь.

- **9-3.** В высокий цилиндрический сосуд радиусом R до уровня h налита жидкость плотностью ρ . В сосуд помещают сплошной однородный цилиндр радиусом r (r < R), высотой l (l < h) и плотностью ρ_C ($\rho_C < \rho$), который свободно плавает на поверхности. На него ставят другой такой же цилиндр. И так далее. При каком минимальном количестве цилиндров, нижний цилиндр "пирамиды" достанет дна? Жидкость из сосуда не выливается, ось "пирамиды" остается все время вертикальной.
- **9-4.** Из куска меди массой $4,5\kappa z$ выплавили прямоугольный параллелепипед, который использовали в качестве нагревательного элемента с источником постоянного напряжения. Тепловые мощности при различном подключении проводника относятся друг к другу как 1:2:8. Определите размеры проводника, если плотность меди $\rho = 9.0 \cdot 10^3 \, \kappa z / \, M^3$. Подключение

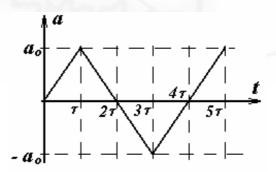
проводника осуществлялось с помощью широких шин, прижимаемых к взаимно противоположным граням параллелепипеда. Краевые эффекты растекания тока не учитывать.


9-5. Брусок массой $m_0 = 1.0 \kappa z$, изготовленный из материала, удельная которого зависит OT температуры ПО $c(t) = c_0 (1 + \alpha t)$, где $c_0 = 1.3 \cdot 10^3 \, \text{Дж} / (\kappa z \cdot K)$, $\alpha = 0.012 \, \text{K}^{-1}$, опускают в калориметр. Начальная температура бруска $t = 0.0^{\circ} C$. В калориметре $t = 45^{\circ} C$. температуре находится $m_1 = 0.50 \kappa z$ воды при калориметре. установившуюся температуру воды В Теплоемкостью калориметра и тепловыми потерями пренебречь. Удельная теплоемкость воды $c_1 = 4.2 \cdot 10^3 \, \text{Дж} / (\kappa z \cdot K)$.

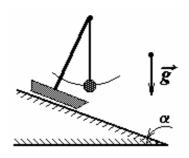
10 класс

10-1. Стержень постоянного поперечного сечения движется поступательно с некоторым ускорением. График зависимости механического напряжения $\sigma(x)$ в стержне от расстояния x до конца B приведен на рисунке. Известно, что в сечении I плотность материала стержня $\rho = 3.0z / cm^3$. Пользуясь графиком, определите плотность материала стержня в сечении 2.

10-2. Открытая снизу толстостенная цилиндрическая бочка массой M и радиусом R установлена вверх дном вертикально на земле. Внутри бочки на ее оси, на расстоянии h от поверхности земли разорвался на множество мелких одинаковых осколков заряд массой m. Считая, что все осколки после разрыва имели одинаковую скорость, разлетелись во все стороны равномерно и затем застряли в стенках бочки или ушли в землю, определите, на какую высоту подпрыгнула бочка. Энергия E, выделившаяся при взрыве, полностью перешла в кинетическую энергию осколков. Изменением давления газа при взрыве пренебречь, сопротивление воздуха не учитывать.

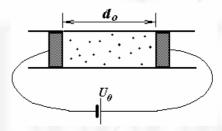

10-4. Внутрь плоского конденсатора, расстояние между пластинами которого D, вставили пластину из диэлектрика с проницаемостью ε и толщиной d (d < D). Грани пластины параллельны обкладкам конденсатора. Какое напряжение нужно подать на обкладки конденсатора, чтобы пластина разорвалась? Предел прочности материала пластины σ_{ϱ} .

10-5. Цилиндрическая трубка радиусом R с зеркальной внутренней поверхностью закрыта с одного торца непрозрачной крышкой с небольшим отверстием в центре. На оси трубки, на расстоянии l от закрытого торца расположен точечный источник света S. На расстоянии L от трубки, перпендикулярно ее оси помещен плоский экран. При этом на экране Объясните образуется система освещенных колец. причину возникновения найлите радиусы Дифракцию колец.

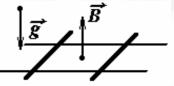

11 класс

света не учитывать.

11-1. Частица движется вдоль оси X. График зависимости ее ускорения от времени представлен на рисунке. В момент времени t=0 частица покоилась. Найдите среднюю скорость движения частицы за время значительно большее τ .


11-2. На тяжелых санках закреплен штатив, к которому на нити длиной привязан небольшой шарик (маятник). Санки плоский склон установили на горы, составляющий угол α с горизонтом. После того как шарик остановился в положении отпустили. Найдите равновесия. санки

период и амплитуду колебаний маятника в процессе движения санок по склону. Трение и сопротивление воздуха не учитывать.


11-3. Внутри открытой горизонтальной цилиндрической трубки находятся два легкоподвижных плотно пригнанных металлических поршня, между которыми находится идеальный газ. Поршни подключены к регулируемому источнику постоянного напряжения. Напряжение источника равно U_{θ} , поршни находятся в равновесии на расстоянии d_{θ} друг от друга. Как

изменится расстояние между поршнями, если медленно увеличить напряжение источника в два раза? Атмосферным давлением пренебречь, температуру газа считать постоянной, его диэлектрическая проницаемость $\varepsilon = 1$.

11-4. На двух горизонтальных параллельных проводящих рельсах свободно

одинаковых проводящих лежат перемычки параллельно друг другу перпендикулярно рельсам. В некоторый времени достаточно быстро момент "включили" однородное вертикальное

магнитное поле. Считая, что сопротивление рельсов значительно меньше сопротивления перемычек и пренебрегая трением, найдите, во сколько раз изменилось расстояние между перемычками.

11-5. В длинной цилиндрической трубке происходит тлеющий разряд в неоне. Считая стенки трубки полностью поглощающими, оцените отношение светового давления к давлению газа.

Для численных оценок принять:

- радиус трубки r = 1.0 c M;
- температура газа T = 400 K;
- в среднем через время $\tau = 1.0 \cdot 10^{-3} \, c$ каждый атом неона испускает квант света с длиной волны $\lambda = 680 \, \mathrm{нm}$.