Младшая лига. Экспериментальный тур. Решения задач.

Часть 1. Компьютерный эксперимент.

1.1 Закон Ньютона для падающей капли

$$ma = mg - \beta v^2. \tag{1}$$

Находим установившуюся скорость из условия a = 0:

$$u = \sqrt{\frac{mg}{\beta}} \quad \Rightarrow \quad \beta = \frac{mg}{u^2} \ . \tag{2}$$

После подстановки в уравнение получаем требуемое уравнение

$$a = g\left(1 - \frac{v^2}{u^2}\right). \tag{3}$$

1.2 Рекуррентные формулы для последовательного расчета

$$a_{k+1} = g\left(1 - \frac{v_k^2}{u^2}\right)$$

$$v_{k+1} = v_k + a_{k+1}\Delta t$$

$$x_{k+1} = x_k + \frac{v_k + v_{k+1}}{2}\Delta t$$
(4)

1.3 Результаты расчетов приведены в таблице 1.

Таблица 1.

<i>t</i> , <i>c</i>	а, м/c ²	<i>v, м/с</i>	Х, М
0,00	10,00	0,00	0,00
0,05	10,00	0,50	0,01
0,10	9,72	0,99	0,05
0,15	8,92	1,43	0,11
0,20	7,72	1,82	0,19
0,25	6,33	2,13	0,29
0,30	4,94	2,38	0,40
0,35	3,70	2,57	0,53
0,40	2,68	2,70	0,66
0,45	1,90	2,80	0,80
0,50	1,32	2,86	0,94
0,55	0,90	2,91	1,08
0,60	0,61	2,94	1,23
0,65	0,41	2,96	1,37
0,70	0,28	2,97	1,52
0,75	0,19	2,98	1,67
0,80	0,13	2,99	1,82
0,85	0,08	2,99	1,97
0,90	0,06	2,99	2,12
0,95	0,04	3,00	2,27
1,00	0,02	3,00	2,42

Графики зависимостей.

1.4 По таблице находим:

$$t^* = 0,50s$$

 $x^* = 0,94m$ (5)

Часть 2. Реальный эксперимент.

2.1 Падение капель.

2.1.1 Результаты измерений приведены в таблице 2.

Таблица 2	2.
-----------	----

Номер капли	По лине	йке	Хк, см	yk, CM	$\frac{x_k}{k}$, см	$\frac{y_k - y_0}{k}$, CM
0	7,5	10,9	0,0	3,4		
1	17,7	23,7	10,2	16,2	10,20	12,80
2	30,8	38,8	23,3	31,3	11,65	13,95
3	48,0	58,7	40,5	51,2	13,50	15,93

2.1.2 Формулы зависимости координат границ капель

$$x_{k} = \left(V_{0}\tau\right)k + \left(\frac{g\tau^{2}}{2}\right)k^{2}$$
(6)

$$y_{k} = D + V_{0} \left(k\tau + \Delta t \right) + \frac{g}{2} \left(k\tau + \Delta t \right)^{2} , \qquad (7)$$

D - диаметр капли.

2.1.3 Оптимальная линеаризация

$$X_{k} = \frac{x_{k}}{k} = (V_{0}\tau) + \frac{g\tau^{2}}{2}k$$
(8)

$$Y_{k} = \frac{y_{k} - y_{0}}{k} = (V_{0} + g\Delta t)\tau + \frac{g\tau^{2}}{2}k.$$
(9)

Результаты расчетов этих величин также приведены в таблице 2. Графики полученных зависимостей показаны ниже.

2.1.4 – 2.1.6 Параметры линейных зависимостей

$$X = a_X k + b_X (10)$$

$$Y = a_Y k + b_Y$$

Могут быть найдены графически, либо по МНК, их значения:

$$a_x = 1,65 \, sm, \quad b_x = 8,5 \, sm$$

 $a_y = 1,57 \, sm, \quad b_x = 11,1 \, sm$ (11)

Сравнивая с теоретическими формулами (8)-(9), находим нужные величины:

$$a_x = \frac{g\tau^2}{2} \implies \tau = \sqrt{\frac{2a_x}{g}} = 0,057 c$$
 (12)

$$b_X = V_0 \tau \implies V_0 = \frac{b_X}{\tau} = 1.5 \frac{M}{c}$$
 (13)

$$b_{Y} - b_{X} = g \tau \Delta t \implies \Delta t = \frac{b_{Y} - b_{X}}{g \tau} = 0,045c$$
 (14)

Строгий расчет погрешности интервала между каплями дает значение $\Delta \tau = 6 \cdot 10^{-3} c$.

2.1.7 Аналогичный расчет величины τ по фото 2 дает значение

 $\tau = 0,079 \, c$

2.1.8 Усреднение двух значений, полученных по разным снимкам, приводит к результату

$$\tau = (0.07 \pm 0.02)c. \tag{15}$$

2.2 Волны на воде.

По фотографии измеряем с помощью линейки координаты x_k волновых фронтов. Результаты приведены в таблице 3 (координаты в см на фото). Для усреднения строим эту зависимость.

Таблица 3.

k	x_{L} , CM
۸ 1	κ, ^γ
1	1
2	2,1
3	2,8
4	4,1
5	5,4
6	65

Коэффициент наклона этого графика равен *a* = 1,1 *см*

С учетом масштабного множителя определяем расстояние между соседними гребнями (в «реальных» сантиметрах)

$$\lambda = 1,4cM \tag{17}$$

Это расстояние проходит волна за промежуток между падениями капель. Поэтому скорость волны

$$v = \frac{\lambda}{\tau} = 20 \frac{cM}{c}.$$
 (20)

2.3 Измерение дождя.

На фотографии выделяем участок площадью в 1 м² (с учетом разности масштабов по горизонтали и вертикали).

Измеряем диаметры волн от капель, упавших на этот участок D_i . По измеренным диаметрам волн и скорости их распространения рассчитываем времена падения капель (до фотографирования)

$$t_i = \frac{D_i}{2\nu} \,.$$

(16)

Упорядочиваем их в порядке возрастания и находим интервалы времени между падениями капель $\Delta t_i = t_i - t_{i-1}$. Рассчитываем среднее время между падениями капель на выделенный участок. Результаты приведены в таблице 4.

(21)

Таблица 4.

i	Di, см	ti, c	Δt_i
1	0,6	0,111	
2	0,7	0,130	0,019
3	0,8	0,148	0,019
4	0,9	0,167	0,019
5	1,1	0,204	0,037
6	1,4	0,259	0,056
7	1,5	0,278	0,019
8	1,6	0,296	0,019
9	1,6	0,296	0,000
10	1,7	0,315	0,019
11	1,8	0,333	0,019
12	1,9	0,352	0,019
13	2,0	0,370	0,019
14	2,3	0,426	0,056
15	2,4	0,444	0,019
16	2,6	0,481	0,037
17	3,0	0,556	0,074
18	3,7	0,685	0,130

Среднее время между падениями капель равно $\left< \Delta t \right> = 0,034\,c$,

Тогда число капель за 1 час равно

$$N = \frac{t}{\left\langle \Delta t \right\rangle} = \frac{3600}{0,034} = 1,06 \cdot 10^5$$

Их общий объем

$$V = N \cdot \frac{1}{6} \pi d^3 = 5.6 \cdot 10^{-5} \, \text{m}^3$$

Следовательно, высота слоя воды, которую «накапает» дождь равна

$$h = \frac{V}{S} = 5.6 \cdot 10^{-2} \, MM \; .$$

Сканирование движущихся объектов.

Часть 1. Сканер – стробоскоп.

1.1 – 1.3 Скатывание стержня

Стержень движется вниз. Прямо на рисунке размечаем оси координат (причем и координата и время измеряются в «клеточках»). Результаты в Таблице 1.

Таблина	1	
гастица		٠

t	х	x/t
1	1,0	1,00
2	3,5	1,75
3	5,5	1,83
4	9,0	2,25
5	12,5	2,50
6	17,0	2,83
7	21,5	3,07
8	26,0	3,25
9	31,5	3,50
10	37.0	3,70

Закон равноускоренного движения

$$x = v_0 t + \frac{at^2}{2} \,.$$

(1)

(2)

Приводится к линейному виду очевидным преобразованием

$$\frac{x}{t} = v_0 + \frac{at}{2} \,.$$

Строим график этой зависимости.

Находим наклон графика

$$K = (0,28 \pm 0,03) \frac{\kappa летка}{\kappa летка^2}$$

Тогда в соответствии с функцией (2) ускорение стержня равно

$$a = (0,56 \pm 0,06) \frac{\kappa \pi em \kappa a}{\kappa \pi em \kappa a^2} = (0,56 \pm 0,06) \frac{5_{MM}}{\left(\frac{5_{MM}}{30 \frac{MM}{c}}\right)^2} = (0,10 + 0,01) \frac{M}{c^2}.$$
(3)

1.2 Поступательное колебание стержня.

На рисунке фактически – закон движения стержня. Поэтому просто измеряем время 4 колебаний, тогда период колебаний

$$T = \frac{1}{4} \frac{(124 \pm 2)_{MM}}{30 \frac{MM}{c}} = (1,03 \pm 0,02)c$$

1.3. Вращение стержня

Вертикальная линия на рисунке, вопервых, соответствует вертикальному положению стержня; во-вторых, является осью времени (в «клеточках»)

Точки пересечения «изображений» чередуются через половину оборота. По рисунку снимаем их координаты и

по рисунку снимаем их координаты и строим соответствующий график.

Таблица 2. Вращение стержня

п	t _n
0	0,0
1	6,2
2	12,5
3	17,2
4	23,9
5	29,5
6	35,0

По графику находим время одного полуоборота

 $T_{\frac{1}{2}} = (5,8 \pm 0,2)$ клетки

Поэтому время одного оборота

$$T = 2T_{\frac{1}{2}} = 2 \cdot (5,8 \pm 0,2) \frac{5_{MM}}{30 \frac{MM}{c}} = (1,93 \pm 0,07)c$$

Угловая скорость

$$\omega = (3,25\pm0,11)\frac{pa\partial}{c}.$$

Часть 2. Телевизор-стробоскоп.

Обозначим расстояние от оси вращения до верхнего края экрана *а*. В этом системе положение стержня описывается уравнением

- положение стержня описывается функцией

$$X = (Y+a)tg(\omega t + \varphi_0),$$

где φ_0 - случайный начальный угол поворота стержня;

- закон движения луча по вертикали

$$Y = \frac{Y_{\text{max}}}{T_0} t \,. \tag{2}$$

Из этих уравнений находим функцию, описывающую изображение стержня на экране:

$$X = (Y+a)tg(\omega T_0 \frac{Y}{Y_{\text{max}}} + \varphi_0).$$
(3)

Эта функция допускает линеаризацию:

$$\operatorname{arctg} \frac{X}{Y+a} = \omega T_0 \frac{Y}{Y_{\text{max}}} + \varphi_0.$$
(4)

(1)

Результаты измерений координат, а также необходимые расчеты приведены в таблице. Значения параметров (измерены по рисунку) $a = 1.9c_M$, $Y_{max} = 12.9c_M$

У, см	Х, см	Y/Y_{max}	arctg $\frac{X}{Y+a}$
0,0	0,7	0,000	0,353
1,0	1,1	0,078	0,363
2,0	1,6	0,156	0,389
3,0	2,2	0,234	0,422
4,0	2,9	0,313	0,457
5,0	3,7	0,391	0,492
6,0	4,6	0,469	0,527
7,0	5,7	0,547	0,570
8,0	6,9	0,625	0,609

Коэффициент наклона графика, рассчитанный по МНК раве
н $K = \omega T_0 = 0.42 \pm 0.04$

Следовательно, угловая скорость вращения стержня равна $\omega = (21 \pm 2)c^{-1}$.

2.2 Колебания вертикально расположенной струны.

Рисунок иллюстрирует механизм получения изображения струны.

Приведенная фотография позволяет не провести измерения с достаточной точностью. Поэтому по виду изображения заключить, можно что за время воспроизведения одного кадра струна совершила половину полного колебания. Поэтому можно оценить период колебания струны

 $T = 2T_0 = 0.04c$, а частота колебаний $v = 25 \Gamma u$.

