
Задача 2. Наклонная плоскость

Для подъема грузов широко используется такой простой механизм, как наклонная плоскость.

Для его описания воспользуемся следующей моделью. Ящик массы $m_0=20~\kappa z$ (груз, который необходимо поднять) помещают на поддон массы $m_1 = 5.0 \ \kappa z$, который размещают на наклонной плоскости, образующей угол $\alpha = 30^{\circ}$ горизонтом. К поддону привязана нерастяжимая прочная веревка, которая переброшена через блок, закрепленный верхней части В

наклонной плоскости. Ко второму свободно свисающему концу веревки прикреплен груз массы M, которую можно изменять. Массы веревки и блока пренебрежимо малы, трения в оси блока нет. Коэффициент трения груза о поддон равен $\mu_0=0,65$, коэффициент трения поддона о наклонную плоскость равен $\mu_1=0,20$. Ускорение свободного падения считайте равным $g=10\frac{M}{c^2}$.

В зависимости от массы подвешенного груза M возможны различные варианты движения ящика и поддона (движутся вверх, или вниз по наклонной плоскости, ящик скользит или не скользит по поддону и т.д.).

Вам необходимо рассмотреть все возможные варианты таких движений. Примем, что ось X направлена вверх параллельно наклонной плоскости.

- 1. Рассмотрите все возможные режимы движения поддона и ящика. Для каждого режима укажите, при каких значениях массы повешенного груза будет реализовываться рассматриваемый режим движения (получите формулы и затем рассчитайте соответствующие значения масс M). Получите формулы для ускорений ящика a_0 и поддона a_1 в каждом из рассмотренных режимов движения.
- 2. Постройте на одном бланке графики зависимостей проекций на ось X ускорений груза a_0 и поддона a_1 от массы подвешенного груза M .
- 3. Укажите, при каком значении массы подвешенного груза M наиболее рационально использовать данное устройство для подъема груза. Свой выбор кратко обоснуйте.
- 4. Укажите, при каком значении массы подвешенного груза M, КПД наклонной плоскости будет максимальным. Чему равен этот максимальный КПД? Кратко сформулируйте причины, по которым этот КПД оказывается меньше единицы.

<u>Примечание.</u> Под КПД наклонной плоскости понимается отношение изменение потенциальной энергии поднимаемого ящика m_0 (работа полезная), к работе, совершенной при опускании подвешенного груза M (работа совершенная).