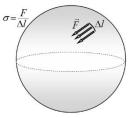

Задача 9-3. Все о давлении!


Часть 1. Сила давления на кривую стенку.

Сосуд имеет форму эллипсоида вращения, высота сосуда h. Сосуд герметично закрыт круглой плоской крышкой радиуса R. В сосуде находится газ под давлением p. Рассчитайте силу давления газа на искривленные стенки сосуда. Укажите направление этой силы.

Часть 2. Натяжение воздушного шарика.

Воздушный шарик имеет форму сферы радиуса R. Внутри шарика находится воздух под давлением p, атмосферное давление равно p_0 . Найдите натяжение резиновой пленки шарика σ .

Силы натяжения резиновой пленки действуют по касательной к ее поверхности. Чтобы охарактеризовать натяжение пленки поступают следующим образом. На поверхности мысленно выделяют небольшой отрезок длиной Δl и находят суммарную силу, действующую на этот отрезок. Отношение этой силы к длине отрезка и называется натяжением пленки.

Часть 3. Магдебургские полушария.

Рассмотрим O. опыты Герике co знаменитыми магдебургскими полушариями для демонстрации силы давления воздуха изобретённого И ИМ воздушного насоса. эксперименте использовались «два

медных полушария около 14 дюймов (35,5 см) в диаметре, полые внутри и прижатые друг к другу». Из собранной сферы выкачивался воздух, и полушария удерживались давлением внешней атмосферы.

В 1654 в Регенсбурге Отто фон Герике продемонстрировал эксперимент рейхстагу в присутствии императора Фердинанда III. После выкачивания из сферы воздуха, 16 лошадей (по 8 с каждой стороны) не смогли разорвать полушария.

- 3.1 Рассчитайте, какую силу надо приложить к полушариям, чтобы их разорвать.
- 3.2 Рассчитайте, с какой силой должна тянуть каждая лошадь, чтобы разорвать полушария. Атмосферное давление считайте равным $p_0 = 1.0 \cdot 10^5 \, \Pi a$. Считайте, давление воздуха внутри полушарий значительно меньше атмосферного.