Задача 10-2 Короткий толчок

Часть 1. Постоянная сила.

1.1 Сил, действующая на частицу, во время включения поля, равна

$$F = qE \tag{1}$$

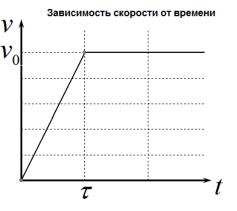
Так как начальная скорость частицы равна нулю, поэтому уравнение теоремы об изменении импульса имеет вид

$$mv_0 = qE\tau . (2)$$

Из этого уравнения находим скорость частицы

$$v_0 = \frac{qE}{m}\tau \ . \tag{3}$$

График этой зависимости показан на рисунке.



 χ

1.2 Уравнение теоремы о кинетической энергии имеет вид

$$\frac{mv_0^2}{2} = qEx. (4)$$

Так как движение тела является равноускоренным, то смещение тела за время действия поля au равно

$$x_0 = \frac{qE}{2m}\tau^2. (5)$$

Подставляя это выражение в формулу (4), получаем значение скорости

$$v_0 = \sqrt{2\frac{qE}{m}\left(\frac{qE}{2m}\tau^2\right)} = \frac{qE}{m}\tau\tag{6}$$

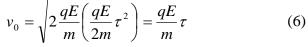


График зависимости скорости от координаты показан на рисунке.

1.2 Полученные формулы полностью совпадают.

Примечание. Формулы совпадают, так обе получены безо всяких приближений.

Часть 2. Сила упругости.

2.1 Пренебрежение смещением частицы за время действия поля равносильно пренебрежением силы упругости. Поэтому в этом приближении скорость частицы описывается тоже формулой, что и в Части 1:

$$\widetilde{v}_0 = \frac{qE}{m}\tau \ . \tag{7}$$

2.2 В начальный момент времени ускорение частицы определяется только электрическим полем, поэтому в используемом приближении закон движения частицы описывается формулой

$$x = \frac{qE}{2m}t^2 \tag{8}$$

Тогда уравнение (1) в указанном приближении сводится к виду

$$m\frac{\Delta v}{\Delta t} = qE - kx \implies \frac{\Delta v}{\Delta t} = \frac{qE}{m} - \frac{k}{m} \cdot \left(\frac{qE}{2m}\tau^2\right).$$
 (9)

Используя математическую подсказку, легко получить выражение для скорости частицы сразу после выключения поля:

$$v_0 = \frac{qE}{m}\tau - \frac{kqE}{6m^2}\tau^3 = \frac{qE}{m}\tau \left(1 - \frac{1}{6}\frac{k}{m}\tau^2\right)$$
 (10)

2.3 Относительная погрешность значения скорости, найденного в первом приближении, равна

$$\varepsilon_{v} = \frac{v_0 - \widetilde{v}_0}{\widetilde{v}_0} = -\frac{1}{6} \frac{k}{m} \tau^2. \tag{11}$$

2.4 Запишем уравнение, следующее из теоремы о кинетической энергии, выразим из него значение искомой скорости

$$\frac{mv_0^2}{2} = qEx - \frac{kx^2}{2} \implies v_0 = \sqrt{2\frac{qE}{m}x - \frac{k}{m}x^2}$$
 (12)

Подставляя значение координаты в момент выключения поля (8), получим

$$v_0 = \sqrt{2\frac{qE}{m}x - \frac{k}{m}x^2} = \sqrt{2\frac{qE}{m}\left(\frac{qE}{2m}\tau^2\right) - \frac{k}{m}\left(\frac{qE}{2m}\tau^2\right)^2} = \frac{qE}{m}\tau\sqrt{1 - \frac{1}{4}\frac{k}{m}\tau^2}.$$
 (13)

2.5 Наконец, используем приближенную формулу (для корня $\gamma = \frac{1}{2}$):

$$v_0 = \frac{qE}{m}\tau\sqrt{1 - \frac{1}{4}\frac{k}{m}\tau^2} \approx \frac{qE}{m}\tau\left(1 - \frac{1}{8}\frac{k}{m}\tau^2\right). \tag{14}$$

2.6 Полученные формулы (10) и (14) имеют одинаковую структуру, но отличаются коэффициентом относительной погрешности. Можно показать, что правильной формулой является формула (10). Для этого достаточно проанализировать порядок малых поправок. Поправка к скорости, учитывающая смещение тела, равна 3 (т.е. пропорциональна τ^3), поэтому поправка к смещению должна быть пропорциональна τ^4 . Следовательно, в формуле (13) величина τ^4 должна быть рассчитана с точностью до 4 порядка.

Примечания для скептиков.

1. Докажем последнее утверждение. Если зависимость скорости от времени имеет вид (10):

$$v_0 = \frac{qE}{m}\tau - \frac{kqE}{6m^2}\tau^3;$$

то смещение, рассчитанное в рамках того же приближения, равно

$$x = \frac{qE}{2m}\tau^2 - \frac{kqE}{24m^2}\tau^4.$$

Подставим это выражение в формулу (13) и проведем разложение (оставляя все слагаемые 4 порядка), в результате чего получим

$$\begin{split} v_0 &= \sqrt{2\frac{qE}{m}x - \frac{k}{m}x^2} = \sqrt{2\frac{qE}{m}\bigg(\frac{qE}{2m}\tau^2 - \frac{kqE}{24m^2}\tau^4\bigg) - \frac{k}{m}\bigg(\frac{qE}{2m}\tau^2\bigg)^2} = \\ &= \sqrt{\bigg(\frac{qE}{m}\tau\bigg)^2 - \frac{1}{12}\bigg(\frac{qE}{m}\tau\bigg)^2\bigg(\frac{k}{m}\tau^2\bigg) - \frac{1}{4}\bigg(\frac{qE}{m}\tau\bigg)^2\bigg(\frac{k}{m}\tau^2\bigg)} = \\ &= \frac{qE}{m}\tau\sqrt{1 - \frac{1}{3}\bigg(\frac{k}{m}\tau^2\bigg)} \approx \frac{qE}{m}\tau\bigg(1 - \frac{1}{6}\bigg(\frac{k}{m}\tau^2\bigg)\bigg) \end{split}$$

А эта формула полностью совпадает с выражением (10).

2. Уравнение (10) имеет точное решение (так является уравнением гармонических колебаний). С учетом начальных условий это решение задается функцией

$$ma = qE - kx \implies x(t) = \frac{qE}{k}(1 - \cos \omega t),$$

 Γ де обозначено $\omega = \sqrt{\frac{k}{m}}$ - круговая частота гармонических колебаний частицы на пружине.

Используя разложение косинуса $\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$, эта функция представляется в виде

$$x(t) = \frac{qE}{k} (1 - \cos \omega t) \approx \frac{qE}{k} \left(\frac{1}{2} (\omega t)^2 - \frac{1}{24} (\omega t)^4 \right)$$

Что полностью совпадает с решением, полученным приближенным методом.

Из уравнения (10) следует, что зависимость скорости от времени во втором приближении имеет вид

$$v = \frac{qE}{m}t - \frac{kqE}{6m^2}t^3 \tag{10*}$$

Тогда в соответствии с математической подсказкой зависимость координаты от времени будет описываться функцией

$$x = \frac{qE}{m} \frac{t^2}{2} - \frac{kqE}{6m^2} \cdot \frac{t^4}{4} = \frac{qE}{2m} t^2 \left(1 - \frac{1}{12} \frac{k}{m} t^2 \right)$$
 (11*)

2.7 Отсюда следует, что смещение в первом приближении равно

$$\widetilde{x} = \frac{qE}{2m}\tau^2 \tag{12*}$$

2.8 Относительная поправка во втором приближении задается формулой

$$\varepsilon = -\frac{1}{12} \frac{k}{m} \tau^2. \tag{13*}$$

Часть 3. Кулоновская сила.

3.1 Напряженность поля необходимо выразить через заданное значение напряжения (разности потенциалов) U_0 . Электрическое поле между обкладками сферического конденсатора эквивалентно полю точечного заряда, помещенного в центр сфер. Поэтому разность потенциалов и напряженность поля описываются формулами

$$U_0 = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right) = \frac{Q}{4\pi\varepsilon_0} \frac{r_2 - r_1}{r_2 \cdot r_1}$$

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$
(15)

Из которых не сложно получить зависимость напряженности поля от расстояния r

$$E(r) = U \frac{r_2 \cdot r_1}{r_2 - r_1} \frac{1}{r^2}. \tag{16}$$

Напряженность поля у поверхности внутренней сферы равна

$$E_0 = E(r = r_1) = U \frac{r_2 \cdot r_1}{r_2 - r_1} \frac{1}{r_1^2} = \frac{U}{r_1} \frac{r_2}{r_2 - r_1}.$$
 (17)

3.2 Наконец выражение для напряженности поля в произвольной точке имеет вид

$$E(r) = E_0 \frac{r_1^2}{r^2} \,. \tag{18}$$

3.3 Так как поле включают на малый промежуток времени τ , то и смещение частицы за этот промежуток времени будет мало. Поэтому представим $r = r_1 + x$, причем $x << r_1$. Тогда вблизи поверхности внутренней сферы напряженность поля может быть описана приближенной формулой

$$E(r) = E_0 \frac{r_1^2}{(r_1 + x)^2} = E_0 \left(1 + \frac{x}{r_1} \right)^{-2} \approx E_0 \left(1 - 2\frac{x}{r_1} \right).$$
 (19)

Тогда уравнение движения тела в течение промежутка времени au имеет вид

$$ma = qE = qE_0 - \frac{2qE_0}{r_1}x. (20)$$

Это уравнение полностью совпадает с рассмотренным уравнением (9), в котором следует положить $k=\frac{2qE_0}{r_1}$. Скорость, которую приобретает тело за время включения поля, описывается формулой (10)

$$v_0 = \frac{qE_0}{m}\tau \left(1 - \frac{1}{6}\frac{k}{m}\tau^2\right) = \frac{qE_0}{m}\tau \left(1 - \frac{1}{3}\frac{qE_0}{mr_1}\tau^2\right)$$
(20)

В первом приближении время движения частицы между обкладками описывается формулой

$$\widetilde{T} = \frac{r_2 - r_1}{\widetilde{v}_0} = \frac{m(r_2 - r_1)}{qE_0 \tau}.$$
(21)

Для определения порядка погрешности обозначим $\frac{qE_0}{m}=a$ - ускорение, с которым

разгонялась частица. Тогда время движения во втором приближении можно записать в виде:

$$T = \tau + \frac{(r_2 - r_1) - \frac{a}{2}\tau^2}{a\tau \left(1 - \frac{1}{3}\frac{a}{r_1}\tau^2\right)}.$$
 (22)

Упростим эту формулу, учитывая малость времени τ

$$T = \tau + \frac{(r_2 - r_1) - \frac{a}{2}\tau^2}{a\tau \left(1 - \frac{1}{3}\frac{a}{r_1}\tau^2\right)} = \frac{(r_2 - r_1)}{a\tau} \frac{1 - \frac{a}{2(r_2 - r_1)}\tau^2}{1 - \frac{1}{3}\frac{a}{r_1}\tau^2} + \tau \approx \frac{(r_2 - r_1)}{a\tau} \left(1 - \frac{a}{2(r_2 - r_1)}\tau^2 + \frac{1}{3}\frac{a}{r_1}\tau^2\right) + \tau = \tilde{T} + \beta\tau$$
(23)

Из этого выражения видно, что порядок поправки — первый, т.е. n = 1.

Этот же результат можно получить из простых рассуждений. Во втором приближении все относительные поправки имеют второй порядок, поэтому и относительная погрешность формулы для расчета времени движения также имеет второй порядок. Так как время движения обратно пропорционально τ , то абсолютная погрешность должна имеет первый порядок:

$$\frac{\Delta T}{\widetilde{T}} \propto \tau^2 \quad \Rightarrow \quad \Delta T \propto \widetilde{T} \tau^2 = \frac{\Delta r}{a\tau} \tau^2 \propto \tau \,. \tag{24}$$